首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The quality of DNA double-strand breaks: A Monte Carlo simulation of the end-structure of strand breaks produced by protons and alpha particles
Authors:A Ottolenghi  M Merzagora  L Tallone  M Durante  H G Paretzke  W E Wilson
Institution:(1) Dipartimento di Fisica, Università di Milano and INFN, sezione di Milano, Via Celoria 16, I-20133 Milan, Italy;(2) Dipartimento di Scienze Fisiche, Università ldquoFederico IIrdquo, Mostra d'Oltremare Pad. 20, I-80125 Naples, Italy;(3) GSF-Institut für Strahlenschutz, D-85758 Neuherberg, Germany;(4) Pacific Northwest Laboratory, 99352 Richland, WA, USA
Abstract:The quality of DNA damage induced by protons and agr-particles of various linear energy transfer (LET) was studied. The aim was to single out specific lesions in the DNA molecule that might lead to biological endpoints such as inactivation. A DNA model coupled with a track structure code (MOCA-15) were used to simulate the lesions induced on the two helixes. Four categories of DNA breaks were considered: single-strand breaks (ssb), bluntended double-strand breaks (dsb, with no or few overlapping bases), sticky-ended double-strand breaks (with cohesive free ends of many bases), and deletions (complex lesions which involve at least two dsb within a small number of base pairs). Calculations were carried out assuming various sets of parameters characterizing the production of these different DNA breaks. No large variations in the yields of ssb and blunt- or sticky-ended dsb were found in the LET range between 10 and 200 keV/µm. On the other hand, the yield of deletions increases up to about 100 keV/µm and seems to reach a plateau at higher LET values. In the LET interval from 30 to 60 keV/µm, protons proved to be more efficient than agr-particles in inducing deletions. The induction of these complex lesions is thus dependent not simply on LET but also on the characteristics of the track structure. Comparison with RBE values for cell killing shows that this special class of dsb might play an important role in radiation-induced cell inactivation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号