首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Early blooming's challenges: extended flowering season, diverse pollinator assemblage and the reproductive success of Gynodioecious Daphne laureola
Authors:Alonso Conchita
Institution:Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas. Apartado 1056, E‐41080 Sevilla, Spain
Abstract:BACKGROUND AND AIMS: The scarcity and unpredictability of active pollinators during late winter in temperate areas tends to favour extended flowering seasons and increased floral longevity in early blooming species, which are usually pollinated by diverse sets of insects. Daphne laureola is a gynodioecious woody perennial that flowers from January to April in southern Spain, a period characterized by cold temperatures, frequent rains and irregular snowfalls. METHODS: Pollinators were excluded at four different times during the flowering season in order to determine the effect of decreased exposure to pollinators on fruit set in female and hermaphrodite individuals. The role of nocturnal and diurnal pollination on reproductive success in each gender was simultaneously evaluated by selective exclusion. KEY RESULTS: A 50 % reduction in the flowering period decreased fruit set of females by 50 %, whereas the corresponding decrease in self-compatible hermaphrodites was only approx. 25 %. Day-active hymenopterans and lepidopterans were infrequent visitors, and nocturnal pollinators were inefficient, suggesting that pollen beetles, Meligethes elongatus, were the main pollinators of D. laureola in the study region. CONCLUSIONS: Beetles were less abundant in pollenless females, although discrimination did not apparently result in pollination limitation of female reproduction. A preference of beetles for sunny locations emphasized the relevance of abiotic conditions for pollination of this early blooming shrub.
Keywords:Daphne laureola  gynodioecy  Mediterranean  Nitidulidae  nocturnal pollination  plant reproductive system  Thymelaeaceae  
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号