首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ectomycorrhiza communities of red oak (<Emphasis Type="BoldItalic">Quercus rubra</Emphasis> L.) of different age in the Lusatian lignite mining district,East Germany
Authors:S Gebhardt  K Neubert  J Wöllecke  B Münzenberger  R F Hüttl
Institution:Brandenburg University of Technology at Cottbus, Konrad-Wachsmann-Allee 6, 03046 Cottbus, Germany. sascha-gebhardt@lycos.de
Abstract:Ectomycorrhizal (ECM) communities were assessed on a 720 m2 plot along a chronosequence of red oak (Quercus rubra) stands on a forest reclamation site with disturbed soil in the lignite mining area of Lower Lusatia (Brandenburg, Germany). Adjacent to the mining area, a red oak reference stand with undisturbed soil was investigated reflecting mycorrhiza diversity of the intact landscape. Aboveground, sporocarp surveys were carried out during the fruiting season in a 2-week interval in the years 2002 and 2003. Belowground, ECM morphotypes were identified by comparing sequences of the internal transcribed spacer regions from nuclear rDNA with sequences from the GenBank database. Fifteen ECM fungal species were identified as sporocarps and 61 belowground as determined by morphological/anatomical and molecular analysis of their ectomycorrhizas. The number of ECM morphotypes increased with stand age along the chronosequence. However, the number of morphotypes was lower in stands with disturbed soil than with undisturbed soil. All stands showed site-specific ECM communities with low similarity between the chronosequence stands. The dominant ECM species in nearly all stands was Cenococcum geophilum, which reached an abundance approaching 80% in the 21-year-old chronosequence stand. Colonization rate of red oak was high (>95%) at all stands besides the youngest chronosequence stand where colonization rate was only 15%. This supports our idea that artificial inoculation with site-adapted mycorrhizal fungi would enhance colonization rate of red oak and thus plant growth and survival in the first years after outplanting.
Keywords:Chronosequence  Diversity  Ectomycorrhiza            Quercus rubra            Reclamation sites
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号