首页 | 本学科首页   官方微博 | 高级检索  
     


Persistence of Escherichia coli O157:H7 on the rhizosphere and phyllosphere of lettuce
Authors:A Mark Ibekwe  CM Grieve  SK Papiernik  C-H Yang
Affiliation: USDA-ARS, US. Salinity Lab. Riverside, CA, USA;
 USDA-ARS, North Central Soil Conservation Research Laboratory, Morris, MN, USA;
 Department of Biological Sciences, University of Wisconsin-Milwaukee, WI, USA
Abstract:Aims:  The major objective of this study was to determine the effects of low levels of Escherichia coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process.
Methods and Results:  Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in the rhizosphere and leaf surfaces after planting. Real-time PCR assays were designed to amplify the stx 1, stx 2 and the eae genes of E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real-time PCR was 2·4 × 103 CFU g−1 of starting DNA in rhizosphere and phyllosphere samples and about 102 CFU g−1 by plate count. The time for pathogens to reach detection limits on the leaf surface by plate counts was 7 days after planting in comparison with 21 days in the rhizosphere. However, real-time PCR continued to detect stx 1, stx 2 and the eae genes throughout the experimental period.
Conclusion:  Escherichia coli O157:H7 survived throughout the growth period as was determined by real-time PCR and by subsequent enrichment and immunomagnetic separation of edible part of plants.
Significance and impact of the Study:  The potential presence of human pathogens in vegetables grown in soils contaminated with E. coli O157:H7 is a serious problem to our national food supply as the pathogen may survive on the leaf surface as they come in contact with contaminated soil during germination.
Keywords:Escherichia coli O157:H7  lettuce  persistence  phyllosphere  real-time PCR  rhizosphere
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号