首页 | 本学科首页   官方微博 | 高级检索  
     


Hierarchical structure of juvenile hybrid aspen xylem revealed using X-ray scattering and microtomography
Authors:Kirsi Svedstr?m  Jessica Lucenius  Jan Van den Bulcke  Denis Van Loo  Peter Immerzeel  Jussi-Petteri Suuronen  Loes Brabant  Joris Van Acker  Pekka Saranp??  Kurt Fagerstedt  Ewa Mellerowicz  Ritva Serimaa
Affiliation:1. Department of Physics, University of Helsinki, P.O.B. 64, 00014, University of Helsinki, Finland
2. UGCT-WOODLAB, Department of Forest and Water Management, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
3. UGCT, Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium
4. Department of Soil Management and Soil Care, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
5. Department of Forest Genetics and Plant Physiology, SLU, Ume? Plant Science Centre, 90183, Ume?, Sweden
7. Finnish Forest Research Institute, P.O.B. 18, 01301, Vantaa, Finland
8. Department of Biosciences, University of Helsinki, P.O.B. 65, 00014, University of Helsinki, Finland
Abstract:X-ray scattering and microtomography (μCT) are useful techniques to reveal the structure of wood at the nano- and micrometer scales. The nanostructure of xylem in greenhouse-grown 2.5- to 3.5-month-old Populus tremula L.?×?tremuloides Michx. trees was characterized using wide-angle X-ray scattering (WAXS), and the cellular structure was investigated using μCT. For comparison, the nanostructure of wood in 2-year-old silver birch, Norway spruce and Scots pine saplings was determined. Based on the μCT results, the lengths of fiber lumina of the hybrid aspen saplings were shorter than any previous results on the lengths of wood fibers. The mean microfibril angles of the hybrid aspen saplings were significantly lower (8°–14°) than those of the birch, spruce and pine saplings (27°–35°) implicating that cellulose microfibrils were oriented nearly parallel to the cell axis in the young hybrid aspen saplings. Hybrid aspen saplings were found to contain tension wood based on the histochemical analysis and μCT images. However, typical tension wood properties, i.e. larger crystallite width and higher crystallinity than in normal wood, were detected only in a few hybrid aspen samples, while in most of the hybrid aspen saplings, the crystallite widths (3.0?±?0.1?nm) and the crystallinities (30?±?5?%) corresponded to those of normal wood. The deformations of cellulose crystallites were determined using WAXS in situ upon dehydration of the never-dried samples. In all the species studied, the cellulose unit cell dimension decreased and disorder of cellulose chains increased parallel to the chains upon drying. Also, the transverse disorder of chains increased in birch, spruce and pine, while no changes were detected in this direction in hybrid aspen. The crystallite widths and drying deformation results might indicate that the gelatinous layer has not fully developed in the young hybrid aspen saplings.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号