首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reversible inactivation of photosystem II reaction centers in cation-depleted chloroplast membranes
Authors:S Bose  C J Arntzen
Institution:USDA/ARS, Department of Botany, University of Illinois, Urbana, Illinois 61801 U.S.A.
Abstract:Isolated pea chloroplasts were washed once in 10 mm NaCl and were then suspended in “low-salt” medium. Approximately one-half of the photosystem II reaction centers of these salt-depleted membranes were found to be photochemically inactive. These units became active in the presence of low concentrations of divalent cations (5–10 mm Mg2+) or high concentrations of monovalent cations (150–200 mm Na+), as evidenced by a twofold increase in the steady-state flash yield of oxygen evolution under short (~10-μs) saturating repetitive flashes (two per second). The half-maximal increase in flash yield occurred at ~2 mM Mg2+ or ~75 mm Na+. The flash yield of hydroxylamine oxidation in these low-salt chloroplasts increased twofold after Mg2+ addition, indicating that the cation action was close to the reaction-center chlorophyll complex. The relation between flash yield and dark time between flashes was not changed significantly by Mg2+, indicating that the rate-limiting step of the overall electron transport (H20 —→ ferricyanide) was not affected significantly. When the rate-limiting step was bypassed using silicomolybdate as the photosystem II electron acceptor (in the presence of diuron), the reduction rate doubled in the presence of Mg2+, even under continuous, saturating light. In glutaraldehyde-fixed chloroplasts, Mg2+ did not increase the flash yield of O2 evolution; this suggests that protein conformational changes in the chloroplast membranes were involved in Mg2+ activation of photosystem II centers.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号