首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dipole moment, enthalpy, and entropy changes of Hodgkin-Huxley type kinetic units.
Authors:E Levitan and  Y Palti
Abstract:Dipole moment, enthalpy, and entropy changes were calculated for hypothetical structural units which control the opening and closing of ionic channels in axon membranes. The changes of these thermodynamic functions were calculated both for activation (transition to intermediate complex) and for the structural transformation as a whole. The calculations are based on the experimentally determined Q10 values and the empirical formulae for the rate constants (alpha's and beta's) as functions of membrane potentials in Hodgkin-Huxley type models. From the calculated thermodynamic functions we suggest that the specific structural units of the axon membranes are probably of macromolecular (possible protein-like) dimensions with large dipole moments (hundreds of debyes). The calculated dipole moment changes of a single structural unit indicate that in many cases these dipole moments saturate at strong depolarizations or hyperpolarizations. The transitions in structural units show substantial activation enthalpies and entropies but the net enthalpy and entropy changes are practically negligible for the transition as a whole, i.e. the structural units presumably undergo displacements. While the calculated dipole moment changes associated with structural transformations in Loligo and Myxicola show similar potential dependencies, those for Rana usually show a different behavior. The relevance of the dipole moment changes to gating currents is discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号