首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Signal transduction and ligand-receptor dynamics in the neutrophil. Ca2+ modulation and restoration
Authors:L A Sklar  Z G Oades
Abstract:Intracellular Ca2+ rises when neutrophils are stimulated with formyl peptide ligands. There is enough Ca2+ released to complex approximately 200 microM Quin 2, (220 +/- 90 microM, 7 donors). This result is interpreted in terms of a fixed storage pool of Ca2+ of 44 pmol/10(6) cells. When extracellular Ca2+ is removed from the medium with 5 mM EGTA (final pH 7.4) just prior to cell stimulation, neither the magnitude nor the early time course of the Quin 2 response to formyl peptide is dramatically influenced. This result supports the concept that neither Ca2+ influx nor efflux, which are elevated in stimulated cells, contributes in a major way to the free Ca2+ pool which is monitored by Quin 2 during the early activation phase of cell responses. We have used intracellular Quin 2, and extracellular Ca2+ without the use of EGTA or ionophores to manipulate the levels of intracellular Ca2+. This is accomplished by depleting cells of intracellular Ca2+ by loading with Quin 2 in the absence of Ca2+. Intracellular Ca2+ is modulated by adding back Ca2+ to the medium. Using simultaneous analyses of cell function and Quin 2 fluorescence, we find that at least two aspects of cellular responsiveness (degranulation and O2- production) depend upon the level of available Ca2+. In contrast, the first phase, at least, of a biphasic rapid light scattering response which is related to actin polymerization is independent of Ca2+. We find that the Ca2+- sensitive cell responses can be partially restored in Ca2+-depleted cells if Ca2+ is provided within 30 s, a period which may reflect the putative lifetime of the transiently active ligand-receptor complex.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号