首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Homologous desensitization of signalling by the beta (beta) isoform of the human thromboxane A2 receptor
Authors:Kelley-Hickie Leanne P  Kinsella B Therese
Institution:School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
Abstract:Thromboxane (TX) A(2) is a potent stimulator of platelet activation/aggregation and smooth muscle contraction and contributes to a variety of pathologies within the vasculature. In this study, we investigated the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated by examining the mechanism of agonist-induced desensitization of intracellular signalling and second messenger generation by TPbeta. It was established that TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) has been identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs. TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization. Thromboxane (TX) A(2) is a potent stimulator of platelet aggregation and smooth muscle contraction and contributes to a variety of vascular pathologies. Herein the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated was investigated by examining the mechanism of its agonist-induced desensitization of intracellular signalling and second messenger generation. TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) was identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号