首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen Uptake During One Year in Subarctic Plant Functional Groups and in Microbes After Long-Term Warming and Fertilization
Authors:Pernille L. Sorensen  Anders Michelsen  Sven Jonasson
Affiliation:(1) Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Oester Farimagsgade 2D, 1353 Copenhagen K, Denmark
Abstract:For the first time in an arctic long-term warming and fertilization experiment, the short-term (days) and longer-term (month and year) nitrogen (N) uptake and allocation in plants, microbes, and soil pools were studied, with 15N-labeling of an organic nitrogen form, glycine. The long-term warming and fertilization had no marked effect on soil inorganic N content, but both dissolved organic N (DON) and plant biomass did increase after fertilization. Soil microbes initially immobilized most of the added 15N, but in the following months, they lost two-thirds, while label concentration in plants increased. After a year, however, the 15N recovered in microbes was still 10-fold higher than that in the plant biomass, showing the high importance of soil microbes in nutrient retention in arctic ecosystems, irrespective of the impact of long-term warming or fertilization. The effects of the treatments on the uptake of label by deciduous shrubs and evergreens paralleled that of their N pool sizes, suggesting that their N uptake potential was unaffected by long-term warming and fertilizer addition. Mosses and herbs had high uptake potential but in fertilized plots they took up less 15N, that is, they were N saturated. The fraction of 15N in microbes tended to decrease after fertilization, but this was an effect of higher N pool dilution after 1 month and a year, and not due to lower initial uptake. Although the concentration of soil inorganic N did not change after fertilization, both increased DON and the results of the 15N label addition showed that the N availability in the ecosystem had increased. By contrast, warming had little effect on soil N pools and microbial 15N uptake, and, hence, had no detectable effects on 15N accumulation.
Keywords:climate change  fertilization  microbial immobilization  plant N uptake  warming
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号