首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mre11 and Rad50 from Pyrococcus furiosus: cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine
Authors:Hopfner K P  Karcher A  Shin D  Fairley C  Tainer J A  Carney J P
Institution:Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
Abstract:The processing of DNA double-strand breaks is a critical event in nucleic acid metabolism. This is evidenced by the severity of phenotypes associated with deficiencies in this process in multiple organisms. The core component involved in double-strand break repair in eukaryotic cells is the Mre11-Rad50 protein complex, which includes a third protein, p95, in humans and Xrs2 in yeasts. Homologues of Mre11 and Rad50 have been identified in all kingdoms of life, while the Nbs1 protein family is found only in eukaryotes. In eukaryotes the Mre11-Rad50 complex has nuclease activity that is modulated by the addition of ATP. We have isolated the Mre11 and Rad50 homologues from the thermophilic archaeon Pyrococcus furiosus and demonstrate that the two proteins exist in a large, heat-stable complex that possesses single-strand endonuclease activity and ATP-dependent double-strand-specific exonuclease activity. These findings verify the identification of the P. furiosus Rad50 and Mre11 homologues and demonstrate that functional homologues with similar biochemical properties exist in all kingdoms of life.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号