首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chrysophanol Relieves Cognition Deficits and Neuronal Loss Through Inhibition of Inflammation in Diabetic Mice
Authors:Xu Chu  Shuhu Zhou  Ran Sun  Lin Wang  Chunye Xing  Ruqing Liang  Qingxia Kong
Institution:1.Department of Neurology,Affiliated Hospital of Jining Medical University,Jining,People’s Republic of China
Abstract:Patients with diabetes mellitus are easy to experience diabetic encephalopathy (DE) and other cognition dysfunction, whereas the neural alterations in developing this disease are unknown yet. Chrysophanol (CHR) is one of traditional Chinese medicine which was reported to show protective effects in cognition dysfunction and inflammatory in previously studies. In this current study, whether CHR protects learning and memory dysfunctions induced by diabetes disease or not and underlying mechanisms were studied. DE model was induced by streptozotocin (STZ, i.p.) in ICR mice. CHR was administrated 3 days after STZ treated mice which was confirmed with diabetes for consecutive 6 days. Learning and memory function was tested by Morris water maze after the CHR injection. The morphology of neuronal cells in hippocampus CA3 region was stained by HE-staining. ELISA and Western blot assay were used to determine the levels of pro-inflammation cytokines (IL-1β, IL-4, IL-6, TNF-α) in hippocampus. Here, we demonstrated that mice harboring diabetes mellitus induced by STZ exhibit high blood glucose, learning and memory deficits detected by Morris water maze behavior tests. Application with CHR right after developing diabetes disease rescues partial blood sugar increasing, learning and memory deficits. The data also indicated that the death rate of neurons and the number of astrocytes in hippocampus CA3 region was significantly improved in diabetic mice. Moreover, the underlying mechanisms of CHR’s protective effect are likely associated with anti-inflammation by downregulating the expression of pro-inflammation cytokines (IL-1β, IL-4, IL-6, TNF-α) in hippocampus and inhibiting the over-activation of astrocytes in hippocampus CA3 region. Therefore, application with CHR contributes to the learning and memory deficits induced by diabetes disease via inhibitory expressions of inflammatory in hippocampus region.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号