首页 | 本学科首页   官方微博 | 高级检索  
     


Expression of DHA-Metabolizing Enzyme Alox15 is Regulated by Selective Histone Acetylation in Neuroblastoma Cells
Authors:Christabel Fung-Yih Ho  Claire Poh-Ee Bon  Yee-Kong Ng  Deron R. Herr  Jui-Sheng Wu  Teng-Nan Lin  Wei-Yi Ong
Affiliation:1.Department of Anatomy,National University of Singapore,Singapore,Singapore;2.Department of Pharmacology,National University of Singapore,Singapore,Singapore;3.Graduate Institute of Life Sciences,National Defense Medical Center,Taipei,Taiwan;4.Institute of Biomedical Sciences,Academia Sinica,Taipei,Taiwan;5.Neurobiology and Ageing Research Programme,National University of Singapore,Singapore,Singapore
Abstract:The omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA) is enriched in neural membranes of the CNS, and recent studies have shown a role of DHA metabolism by 15-lipoxygenase-1 (Alox15) in prefrontal cortex resolvin D1 formation, hippocampo-prefrontal cortical long-term-potentiation, spatial working memory, and anti-nociception/anxiety. In this study, we elucidated epigenetic regulation of Alox15 via histone modifications in neuron-like cells. Treatment of undifferentiated SH-SY5Y human neuroblastoma cells with the histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sodium butyrate significantly increased Alox15 mRNA expression. Moreover, Alox15 expression was markedly upregulated by Class I HDAC inhibitors, MS-275 and depsipeptide. Co-treatment of undifferentiated SH-SY5Y cells with the p300 histone acetyltransferase (HAT) inhibitor C646 and TSA or sodium butyrate showed that p300 HAT inhibition modulated TSA or sodium butyrate-induced Alox15 upregulation. Differentiation of SH-SY5Y cells with retinoic acid resulted in increased neurite outgrowth and Alox15 mRNA expression, while co-treatment with the p300 HAT inhibitor C646 and retinoic acid modulated the increases, indicating a role of p300 HAT in differentiation-associated Alox15 upregulation. Increasing Alox15 expression was found in primary murine cortical neurons during development from 3 to 10 days-in-vitro, reaching high levels of expression by 10 days-in-vitro—when Alox15 was not further upregulated by HDAC inhibition. Together, results indicate regulation of Alox15 mRNA expression in neuroblastoma cells by histone modifications, and increasing Alox15 expression in differentiating neurons. It is possible that one of the environmental influences on the immature brain that can affect cognition and memory, may take the form of epigenetic effects on Alox15 and metabolites of DHA.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号