首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sodium bicarbonate‐gelled chitosan beads as mechanically stable carriers for the covalent immobilization of enzymes
Authors:Marwa I Wahba
Institution:1. Dept. of Chemistry of Natural and Microbial Products, National Research Center, El‐Behooth St., Dokki, Giza, Egypt;2. Centre of Scientific Excellence‐Group of Encapsulation and Nanobiotechnology, National Research Center, El‐Behooth St., Dokki, Giza, Egypt
Abstract:The poor mechanical stability of chitosan has long impeded its industrial utilization as an immobilization carrier. In this study, the mechanical properties of chitosan beads were greatly improved through utilizing the slow rate of the sodium bicarbonate‐induced chitosan gelation and combining it with the chemical cross‐linking action of glutaraldehyde (GA). The GA‐treated sodium bicarbonate‐gelled chitosan beads exhibited much better mechanical properties and up to 2.45‐fold higher observed activity of the immobilized enzyme (β‐D‐galactosidase (β‐gal)) when compared to the GA‐treated sodium tripolyphosphate (TPP)‐gelled chitosan beads. The differences between the sodium bicarbonate‐gelled and the TPP‐gelled chitosan beads were proven visually and also via scanning electron microscopy, elemental analysis, and differential scanning calorimetry. Moreover, the optimum pH, the optimum temperature, the apparent Km, and the apparent Vmax of the β‐gals immobilized onto the two aforementioned types of chitosan beads were determined and compared. A reusability study was also performed. This study proved the superiority of the sodium bicarbonate‐gelled chitosan beads as they retained 72.22 ± 4.57% of their initial observed activity during the 13th reusability cycle whereas the TPP‐gelled beads lost their activity during the first four reusability cycles, owing to their fragmentation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:347–361, 2018
Keywords:sodium bicarbonate  chitosan  mechanical properties  glutaraldehyde  covalent immobilization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号