首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sex differences in the circadian profiles of melatonin and cortisol in plasma and urine matrices under constant routine conditions
Authors:Pippa J Gunn  Benita Middleton  Sarah K Davies  Victoria L Revell
Institution:1. Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom;2. Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headington, Oxford, United Kingdom;3. Faculty of Medicine, Imperial College London, London, United Kingdom
Abstract:Conflicting evidence exists as to whether there are differences between males and females in circadian timing. The aim of the current study was to assess whether sex differences are present in the circadian regulation of melatonin and cortisol in plasma and urine matrices during a constant routine protocol. Thirty-two healthy individuals (16 females taking the oral contraceptive pill (OCP)), aged 23.8 ± 3.7 (mean ± SD) years, participated. Blood (hourly) and urine (4-hourly) samples were collected for measurement of plasma melatonin and cortisol, and urinary 6-sulfatoxymelatonin (aMT6s) and cortisol, respectively. Data from 28 individuals (14 females) showed no significant differences in the timing of plasma and urinary circadian phase markers between sexes. Females, however, exhibited significantly greater levels of plasma melatonin and cortisol than males (AUC melatonin: 937 ± 104 (mean ± SEM) vs. 642 ± 47 pg/ml.h; AUC cortisol: 13581 ± 1313 vs. 7340 ± 368 mmol/L.h). Females also exhibited a significantly higher amplitude rhythm in both hormones (melatonin: 43.8 ± 5.8 vs. 29.9 ± 2.3 pg/ml; cortisol: 241.7 ± 23.1 vs. 161.8 ± 15.9 mmol/L). Males excreted significantly more urinary cortisol than females during the CR (519.5 ± 63.8 vs. 349.2 ± 39.3 mol) but aMT6s levels did not differ between sexes. It was not possible to distinguish whether the elevated plasma melatonin and cortisol levels observed in females resulted from innate sex differences or the OCP affecting the synthetic and metabolic pathways of these hormones. The fact that the sex differences observed in total plasma concentrations for melatonin and cortisol were not reproduced in the urinary markers challenges their use as a proxy for plasma levels in circadian research, especially in OCP users.
Keywords:Sex differences  melatonin  cortisol  6-sulfatoxymelatonin  constant routine  circadian rhythms  human
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号