首页 | 本学科首页   官方微博 | 高级检索  
     


Instability development in heated human erythrocytes
Authors:Lawrence Arthur Crum  William Terence Coakley  John Owen Thomas Deeley
Affiliation:Microbiology Department, University College, Newport Road, Cardiff CF2 1TA U.K.
Abstract:Heated human erythrocytes gradually lose their form-maintaining structure as the temperature is increased to 50°C and can behave in some respects as a viscous fluid. We have developed a technique for heating and stressing these cells that is novel, simple and quantitatively precise. We have applied this technique to heated human erythrocytes and have measured instability development in the cells. We have employed instability growth theory to calculate a value for an effective surface tension which, in contrast to other methods of membrane surface tension measurement sought to minimize the effects of membrane supporting structural elements. The value obtained for the surface tension of the heated erythrocyte membrane was 0.9 · 10?6 N/m with a range of variation from 0.4 · 10?6 N/m to 1.4 · 10?6 N/m. The methods described may be useful for determining fundamental physical parameters such as internal viscosity and interfacial tension in other systems.
Keywords:Stress  Hyperthermia  Surface wave  Liquid jet  Surface tension  (Erythrocyte membrane)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号