首页 | 本学科首页   官方微博 | 高级检索  
     


Stop-flow studies of solute uptake in rat lungs
Authors:Effros, R. M.   Schapira, R.   Presberg, K.   Ozker, K.   Jacobs, E. R.
Abstract:Stop-flow studies were used to characterize solute uptake inisolated rat lungs. These lungs were perfused at 8 or 34 ml/min for10-28 s with solutions containing125I-albumin and two or more ofthe following diffusible indicators: [3H]mannitol,[14C]urea,3HOH,201Tl+,or86Rb+.After this loading period, flow was stopped for 10-300 s and thenresumed to flush out the perfusate that remained in the pulmonary vasculature during the stop interval. Concentrations of201Tl+and86Rb+in the venous outflow decreased after the stop interval, indicating uptake from exchange vessels during the stop interval. The amount ofthese K+ analogs lost from thecirculation during the stop interval was greater when the intervalswere longer. However, losses of201Tl+at 90 s approached those at 300 s. Because extraction continued afterthe vasculature had been flushed, vascular levels had presumably fallento negligible levels during the stop interval. By 90 s of stop flow thevascular volume that was cleared of201Tl+averaged 0.657 ± 0.034 (SE) ml in the experiments perfused at 8 ml/min and 0.629 ± 0.108 ml in those perfused at 34 ml/min. Increases in perfusate K+decreased the cleared volumes of201Tl+and86Rb+.Uptake of[3H]mannitol,[14C]urea, and3HOH during the stop intervals wasobserved only when the lungs were loaded at high flow for shortintervals. Decreases in201Tl+and86Rb+concentrations in the pulmonary outflow can be used to identify thefraction of the collected samples that were within exchange vessels ofthe lung during the stop interval and may help determine thedistribution of solute and water exchange along the pulmonary vasculature.

Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号