首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Early Events in the Penetration of the Embryo Sac in Torenia fournieri(Lind.)
Authors:Wallwork  M A B; Sedgley  M
Institution:Department of Horticulture, Viticulture and Oenology, Waite Campus, University of Adelaide, Glen Osmond, South Australia 5064, Australia
Abstract:At maturity, Torenia fournieri(Lind.) has an embryo sac whichprotrudes through the micropyle placing the synergids, egg celland part of the central cell within the ovary locule adjacentto the placenta. The present study utilized this unique attributein combination with confocal and light microscopy to characterizethe timing and associated structural changes during pollinationevents leading to double fertilization. The observation of spermnuclei in living gametophyte tissue is an important advancein the identification, in real time, of stages leading to fertilizationin angiosperms. A continuum of fertilization occurred between12 and 16 h after pollination (hap), with peak frequency ofegg and sperm fusion at 14 hap (43%). Movement of the spermcells through the degenerated synergid took several hours andfusion between sperm and their respective female nuclei occurredsimultaneously. Changes in embryo sac structure were also documented.Cell walls in the region between the synergids and egg cellwere poorly developed prior to pollen tube penetration. Thickenedcell walls were observed around the periphery of the synergidsand egg cell following pollination, and in the central cellwhere it lay within the body of the ovule. Starch was observedin the cells of the embryo sac, although the number and distributionof granules varied before and after pollination. These temporaland spatial observations of the embryo sac inTorenia fournieriprovide a basis for further research to determine control mechanismsoperating during specific double fertilization events in angiosperms.Copyright 2000 Annals of Botany Company Double fertilization, embryo sac, sperm nuclei, Hoechst, Torenia fournieri
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号