首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phenotypic and functional characterization of human T cell clones
Authors:S S Patel  A D Duby  D L Thiele  P E Lipsky
Institution:Harold C. Simmons Arthritis Research Center, Southwestern Medical School, Dallas 75235.
Abstract:The capacity of human peripheral blood-derived T cell clones to carry out a variety of functions was examined. T cell clones were generated by stimulating individual peripheral blood T cells with PHA by a procedure that yielded a growing clone from a mean of greater than 92% of the cultured cells. A total of 65 T cell clones (44 CD4+ and 21 CD8+) generated from two individual donors were examined for their functional capabilities. All T cell clones examined secreted IL-2, IFN-gamma, and lymphotoxin/tumor necrosis factor like activity when stimulated with immobilized mAb to the CD3 complex (64.1). When 54 additional T cell clones from a third donor were analyzed, all were found to produce IL-2. Upon activation with immobilized 64.1, all CD4+ clones and 91% of the CD8+ clones induced the generation of Ig-secreting cells from purified B cells. The CD8+ clones that did not serve as Th cells alone were able to augment the capacity of fresh CD4+ cells to generate Ig-secreting cells. Each of these clones was also found to effect MHC-unrestricted cytotoxicity upon activation with immobilized 64.1. The CD8+ clones were somewhat more effective killers than CD4+ clones, although there was considerable overlap. A total of 18 clones was analyzed for TCR beta-chain gene rearrangement. Of the clones exhibiting rearrangements of the beta-chain gene, 94% were found to have a single rearrangement pattern. Finally, the detailed phenotype of 15 (11 CD4+ and 4 CD8+) of these clones was examined. Variable numbers of cells of each of the clones expressed Ag identified by mAb 4B4 (CD29), Leu 8, Leu 15 (CD11b), and NKH1. Moreover, cells of 6 of 11 CD4+ clones and 4 of 4 CD8+ clones also expressed CD45R in addition to CD29; expression of CD45R and CD29 varied with the activation status of the clone. The current data demonstrate that nearly all of the T cell clones were able to accomplish each of the functions examined regardless of the surface phenotype. Inasmuch as the clones were generated using a technique that expanded more than 92% of the circulating T cells, the data imply that the progeny of the vast majority of T cells may have the inherent capacity to exert a wide array of functional activities.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号