首页 | 本学科首页   官方微博 | 高级检索  
     


Polyethylene glycol-attached antioxidant enzymes decrease pulmonary oxygen toxicity in rats
Authors:C W White  J H Jackson  A Abuchowski  G M Kazo  R F Mimmack  E M Berger  B A Freeman  J M McCord  J E Repine
Affiliation:Department of Pediatrics, University of Colorado School of Medicine, Denver 80262.
Abstract:When exposed continuously to hyperoxia (100% O2, 760 Torr barometric pressure), rats pretreated with polyethylene glycol (PEG)-attached superoxide dismutase and catalase (PEG-SOD + PEG-CAT) lived longer (79.1 + 7.6 h) than rats pretreated with saline (60.7 +/- 2.1 h) or PEG-inactivated-SOD + PEG-inactivated-CAT (62.3 +/- 1.6 h). Rats pretreated with PEG-SOD + PEG-CAT also had less hyperoxia-induced acute oxidative edematous lung injury, as assessed by increases in lung oxidized glutathione (GSSG) contents, pleural effusions, and lung lavage albumin concentrations than saline-pretreated rats. Rats pretreated with the long-lived conjugates PEG-inactivated-SOD + PEG-inactivated-CAT or PEG-albumin also had decreased acute oxidative edematous lung injury compared with rats pretreated with PEG, SOD + CAT + PEG, SOD + CAT, or saline. In vitro studies suggested that PEG itself may have contributed to protection by scavenging hydroxyl radical (.OH) but not superoxide (O2-.) or H2O2. Compared with more effective endogenous (via preexposure to hypoxia) or exogenous (via liposomes) means for increasing lung antioxidant enzymes, PEG enzymes are less protective against lung injury from continuous hyperoxia.
Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号