首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lateral dendritic shunt inhibition can regularize mitral cell spike patterning
Authors:François David  Christiane Linster  Thomas A Cleland
Institution:Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. fdavid@olfac.univ-lyon1.fr
Abstract:Mitral cells, the principal output neurons of the olfactory bulb, receive direct synaptic activation from primary sensory neurons. Shunting inhibitory inputs delivered by granule cell interneurons onto mitral cell lateral dendrites, while poorly positioned to prevent spike initiation, are believed to influence spike timing and underlie coordinated field potential oscillations. We investigated this phenomenon in a reduced compartmental mitral cell model suitable for incorporation into network simulations. Lateral dendritic shunt conductances delayed spiking to a degree dependent on both their electrotonic distance and phase of onset. Moreover, when the afferent activation of mitral cells was loosely coordinated in time, recurrent inhibition significantly narrowed the distribution of mitral cell spike times, illustrating a tendency towards coordinated synchronous activity. However, if mitral cell activity was initially disorganized, recurrent inhibition actually increased the variance in spike timing. This result suggests an essential role for early mechanisms of temporal coordination in olfaction, such as sniffing and the initial synchronization of mitral cell intrinsic oscillations by periglomerular cell-mediated inhibition.
Keywords:GABAA            Granule cell  Synchronization  Olfactory bulb  Shunt inhibition
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号