首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamic structure of vesicle-bound melittin in a variety of lipid chain lengths by solid-state NMR
Authors:Toraya Shuichi  Nishimura Katsuyuki  Naito Akira
Institution:Faculty of Engineering, Yokohama National University, Yokohama, Japan.
Abstract:Solid-state 31P- and 13C-NMR spectra were recorded in melittin-lecithin vesicles composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Highly ordered magnetic alignments were achieved with the membrane surface parallel to the magnetic field above the gel-to-liquid crystalline phase transition temperature (Tc). Using these magnetically oriented vesicle systems, dynamic structures of melittin bound to the vesicles were investigated by analyzing the 13C anisotropic and isotropic chemical shifts of selectively 13C-labeled carbonyl carbons of melittin under the static and magic-angle spinning conditions. These results indicate that melittin molecules adopt an alpha-helical structure and laterally diffuse to rotate rapidly around the membrane normal with tilt angles of the N-terminal helix being -33 degrees and -36 degrees and those of the C-terminal helix being 21 degrees and 25 degrees for DLPC and DPPC vesicles, respectively. The rotational-echo double-resonance method was used to measure the interatomic distance between 1-13C]Val8 and 15N]Leu13 to further identify the bending alpha-helical structure of melittin to possess the interhelical angles of 126 degrees and 119 degrees in DLPC and DPPC membranes, respectively. These analyses further lead to the conclusion that the alpha-helices of melittin molecules penetrate the hydrophobic cores of the bilayers incompletely as a pseudo-trans-membrane structure and induce fusion and disruption of vesicles.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号