首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering a central metabolic pathway: glycolysis with no net phosphorylation in an Escherichia coli gap mutant complemented with a plant GapN gene.
Authors:F Valverde  M Losada  A Serrano
Affiliation:Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Spain.
Abstract:A cDNA fragment containing the Pisum sativum GapN gene, which encodes the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase, was cloned in a prokaryote expression vector. This construct enabled Escherichia coli strain W3CG, a mutant which lacks the glycolytic phosphorylating G3P dehydrogenase, to grow aerobically on sugars. The functionally complemented mutant exhibited high levels of the catalytically active plant enzyme, which renders 3-phosphoglycerate and NADPH, thus bypassing the first substrate level phosphorylation step of the glycolysis. As expected if such a glycolytic bypass would be operative in vivo, this clone failed to grow anaerobically on sugars in contrast to W3CG clones complemented with phosphorylating glyceraldehyde-3-phosphate dehydrogenases. According to the irreversible catabolic character of the non-phosphorylating reaction, the GapN-complemented clone was unable to grow on gluconeogenic substrates. This metabolic engineering approach demonstrates that a pure catabolic Embden-Meyerhof pathway with no net energy yield is feasible.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号