首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Maximum axial growth pressures of the lateral roots of pea and eucalypt
Authors:Misra  RK
Institution:(1) Cooperative Research Centre for Temperate Hardwood Forestry, G.P.O. Box 252-12, Hobart, Tasmania, 70015, Australia
Abstract:Although lateral roots may contribute significantly towards growth and nourishment of plants, the mechanics of their elongation behaviour in strong soils is not well known. The aim of this study is to report maximum axial growth pressures (p) and maximum elongation rates (E) of the lateral roots of an annual herbaceous plant (pea) and a woody perennial (eucalypt). As such measurements have not been reported previously, measurements of P and E for lateral roots were compared with the primary roots of pea for which reports are widespread. Values of P were estimated from the measured maximum values of axial force and root diameter on single, intact roots of seedlings in the laboratory. Additional measurements of both P and E were made for the lateral roots of pea when the growth of the remaining root axes was stopped (with removal of tips) to determine the overall effects of root-growth-inhibition on P and E of single roots.Values of P and E for lateral roots of pea were significantly greater than those for the lateral roots of eucalypt. Although root diameter for the primary roots of pea were similar to those for the lateral roots of eucalypt, the former exerted nearly twice as much pressure as the latter. The lateral roots of pea elongated significantly slower than the primary roots; however, P of lateral roots was significantly lower than the primary roots when elongation of all other roots was inhibited during the measurements. Production and/or development of lateral roots increased when elongation of the remaining roots (both primary and lateral roots) of pea seedlings was restricted due to the removal of root tips and exposure of one of the lateral roots to high strength. In general, maximum axial force exerted by primary and lateral roots was similar for roots of <1 mm diameter. However, primary roots exerted greater maximum axial force than the lateral roots when root diameter was >1 mm. As axial pressure of lateral roots was independent of root diameter, thickening of root tips is less likely to assist penetration of lateral roots in strong soils.
Keywords:Eucalyptus nitens  lateral roots  mechanical impedance  Pisum sativum  root diameter  root growth pressure
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号