Abstract: | The arrangement of muscle spindles in m. ext. long. dig. IV has been examined by microdissection. It is confirmed that spindle systems generally appear to consist of individual receptors. Stimulation effects of fast motor fibres (conduction velocities greater than 12 m/sec) on the spindles of the same muscle were studied. Receptors were isolated with their nerves and the appropriate spinal roots, the latter ones were used for stimulating efferent fibres and recording sensory discharges. Single shocks to the ventral root filaments caused afferent responses ranging from a single action potential to a train of impulses. During repetitive stimulation (train of stimuli at frequency of 10 to 150/sec) a marked increase in afferent activity was found. Afferent activity could be driven by the frequency of stimuli ("driving") and the stimulus/action potentials ratio varied from 1:1 to 1:3 or more. The rate of sensory discharge depended on the frequency of stimuli: the maximum effect, was attained at 30 to 50 stimuli/sec and, in the most responsive receptors, up to 80 stimuli/sec. Slight increases of the initial lengths of the receptors caused facilitation of sensory responses to motor stimulation. Moreover, impairing effects, which appear during sustained or high-frequency stimulation, possibly related to fatigue in intrafusal neuromuscular transmission, could be relieved by increasing the initial length. The repetitive stimulation of fast fusimotor fibres increased both dynamic and static responses and also raised the afferent activity after a period of stretching, when usually a depression occurs; these effects varied according to the preparation, its initial tension and the frequency of stimulation. The main feature of the examined motor fibres, when stimulated, is the constant excitatory action on muscle spindle static response. Results are discussed. It is suggested that the different characteristics of intrafusal muscle fibres, the receptor initial tension and the frequency of motor units discharges, may together affect muscle spindles static or dynamic performance. |