首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural model of the transmembrane Fo rotary sector of H-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ
Authors:Robert H Fillingame  Oleg Y Dmitriev
Institution:Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706-1532, USA
Abstract:H+-transporting, F1Fo-type ATP synthases utilize a transmembrane H+ potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating β subunits of the extramembranous F1 sector of the enzyme, synthesis being driven by rotation of the γ subunit in the center of the F1 molecule between the alternating catalytic sites . The H+ electrochemical potential is thought to drive γ subunit rotation by first coupling H+ transport to rotation of an oligomeric rotor of c subunits within the transmembrane Fo sector. The γ subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the γ and ε subunits of F1. In this essay we will review recent studies on the Escherichia coli Fo sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp61 centered in the second transmembrane helix (TMH). A model for the structural organization of the c10 oligomer in Fo was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H+-carrying carboxyl of subunit c is occluded between neighboring subunits of the c10 oligomer and that two c subunits pack in a “front-to-back” manner to form the H+ (cation) binding site. In order for protons to gain access to Asp61 during the protonation/deprotonation cycle, we propose that the outer, Asp61-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp61 protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp61. The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c10 oligomer during coupled synthesis of ATP.
Keywords:ATP synthase  Proton transport  Rotary motor  Subunit c  NMR  Fo structure  Cross-linking  Molecular modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号