首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protein phosphorylation in rat cardiac microsomes: Effects of inhibitors of protein kinase A and of phosphatases
Authors:Sulakhe  Prakash V  Vo  Xuan T  Morris  Thomas E  Pato  Mary D  Khandelwal  Ramji L
Institution:(1) Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada;(2) Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
Abstract:The phosphorylation of rat cardiac microsomal proteins was investigated with special attention to the effects of okadaic acid (an inhibitor of protein phosphatases), inhibitor 2 of protein phosphatase 1 and inhibitor of cyclic AMP-dependent protein kinase (protein kinase A). The results showed that okadaic acid (5 µM) modestly but reproducibly augmented the protein kinase A-catalyzed phospholamban (PLN) phosphorylation, although exerted little effect on the calcium/calmodulin kinase-catalyzed PLN phosphorylation. Microsomes contained three other substrates (Mr 23, 19 and 17 kDa) that were phosphorylated by protein kinase A but not by calcium/calmodulin kinase. The protein kinase A-catalyzed phosphorylation of these three substrates was markedly (2-3 fold) increased by 5 µM okadaic acid. Calmodulin was found to antagonize the action of okadaic acid on such phosphorylation. Protein kinase A inhibitor was found to decrease the protein kinase A-catalyzed phosphorylation of microsomal polyp eptides. Unexpectedly, inhibitor 2 was also found to markedly decrease protein kinase A-catalyzed phosphorylation of phospholamban as well these other microsomal substrates. These results are consistent with the views that protein phosphatase 1 is capable of dephosphorylating membrane-associated phospholamban when it is phosphorylated by protein kinase A, but not by calcium/calmodulin kinase, and that under certain conditions, calcium/calmodulin-stimulated protein phosphatase (protein phosphatase 2B) is also able to dephosphorylate PLN phosphorylated by protein kinase A. Additionally, the observations show that protein phosphatase 1 is extremely active against the three protein kinase A substrates (Mr 23, 19 and 17 kDa) that were present in the isolated microsomes and whose state of phosphorylation was particularly affected in the presence of dimethylsulfoxide. Protein phosphatase 2B is also capable of dephosphorylating these three substrates. (Mol Cell Biochem 175: 109–115, 1997
Keywords:phospholamban  okadaic acid  sarcoplasmic reticulum  protein phosphatase(s)  protein kinase(s)  phosphatase inhibitors
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号