首页 | 本学科首页   官方微博 | 高级检索  
     


Rare earth elements,aluminium and silicon distribution in the fern Dicranopteris linearis revealed by μPIXE Maia analysis
Authors:Wen-Shen Liu  Jamie S Laird  Chris G Ryan  Ye-Tao Tang  Rong-Liang Qiu  Guillaume Echevarria  Jean-Louis Morel  Antony van der Ent
Abstract:BackgroundThe fern Dicranopteris linearis is a hyperaccumulator of rare earth elements (REEs), aluminium (Al) and silicon (Si). However, the physiological mechanisms of tissue-level tolerance of high concentrations of REE and Al, and possible interactions with Si, are currently incompletely known.MethodsA particle-induced X-ray emission (μPIXE) microprobe with the Maia detector, scanning electron microscopy with energy-dispersive spectroscopy and chemical speciation modelling were used to decipher the localization and biochemistry of REEs, Al and Si in D. linearis during uptake, translocation and sequestration processes.ResultsIn the roots >80 % of REEs and Al were in apoplastic fractions, among which the REEs were most significantly co-localized with Si and phosphorus (P) in the epidermis. In the xylem sap, REEs were nearly 100 % present as REEH3SiO42+, without significant differences between the REEs, while 24–45 % of Al was present as Al-citrate and only 1.7–16 % Al was present as AlH3SiO42+. In the pinnules, REEs were mainly concentrated in necrotic lesions and in the epidermis, and REEs and Al were possibly co-deposited within phytoliths (SiO2). Different REEs had similar spatial localizations in the epidermis and exodermis of roots, the necrosis, veins and epidermis of pinnae of D. linearis.ConclusionsWe posit that Si plays a critical role in REE and Al tolerance within the root apoplast, transport within the vascular bundle and sequestration within the blade of D. linearis.
Keywords:Aluminium   co-deposition   hyperaccumulator   necrotic lesion   phytolith   rare earth elements   root epidermis   silicon   xylem sap
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号