Transmembrane hyperpolarization and increase of K+ uptake in maize roots treated with permeant weak acids |
| |
Authors: | M. T. MARRÈ ,G. ROMANI,E. MARRÈ |
| |
Affiliation: | Department of Biology, Laboratory of Plant Physiology, University of Milan, Italy |
| |
Abstract: | Abstract. Treatment with weak acids (butyrate, isobutyrate, trimethylacetate, DMO) at a concentration of I mol m−3 in apical maize root segments induced a rapid, marked hyperpolarization ( ca. 30 mV) of the transmembrane electrical potential, stable for at least 30 min. With butyrate, this effect increased with the increase of butyrate concentration in the medium, reaching a value of ca. 75 mV at a concentration of 5 mol m−3. Both the butyrate uptake and the hyperpolarization were roughly proportional to the pH-regulated, undissociated/dissociated acid ratio in the medium. The butyrate-induced hyperpolarization was reduced progressively, but was still present when K+ concentration in the medium was raised from 1 to 10 mol m−3. The hyperpolarization was accompanied by a significant increase of K+ uptake, and was almost completely suppressed by the presence of the protonophore carbonylcyanid- p -trichlorometoxy-phenylhydrazone (CCCP) and strongly reduced by erytrosin B, an inhibitor of some animal ATPases and of a K+-activated, DCCD- and vanadate-sensitive Mg2+-ATPase from plant microsomes. The hyperpolarization effect of butyrate was additive to that of fusicoccin at low, but not at high (5 mol m−3), concentrations of the weak acid. These results suggest that the intracellular pH regulates the activity of the electrogenic proton pump at the plasmalemma. |
| |
Keywords: | intracellular pH transmembrane potential K+ uptake proton pump butyrate |
|
|