首页 | 本学科首页   官方微博 | 高级检索  
     


Involvement of Na/H exchanger and respiratory burst enzymes NADPH oxidase and NO synthase,in Cd-induced lipid peroxidation and DNA damage in haemocytes of mussels
Authors:Eleni Banakou  Stefanos Dailianis
Affiliation:Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26 500 Patra, Greece
Abstract:This study investigated cadmium-induced oxidative and genotoxic effects, such as lipid peroxidation and disturbance of DNA integrity (DNA damage) in haemocytes of mussel Mytilus galloprovincialis and the possible involvement of Na+/H+ exchanger (NHE), and/or the main enzymes of respiratory burst, NADPH oxidase and nitric oxide (NO) synthase, in the induction of Cd toxic effects. In order to verify the role of either NHE, or NADPH oxidase and NO synthase in Cd-mediated toxicity, inhibitors such as ethyl-N-isopropyl-amiloride (EIPA), diphenyleneiodonium chloride (DPI) and NG-nitro-l-arginine methyl ester (L-NAME) were used in each case. Moreover, phorbol-myristate acetate (PMA), a well-known protein kinase C (PKC)-mediated NADPH oxidase and NO synthase stimulator, as well as hydrogen peroxide (H2O2), a well-known genotoxic agent, was also used for elucidating the modulation of signaling molecules within cells, thus leading to the induction of lipid peroxidation and DNA damage. The results of the present study showed that micromolar concentrations of Cd (0.05–50 μΜ) could enhance both lipid peroxidation and DNA damage, possible via a PKC-mediated signaling pathway with the involvement of NHE, thus leading to the induction of NADPH oxidase and NO synthase activity, since inhibition of either NHE, or NADPH oxidase and NO synthase activity, significantly attenuates Cd-induced toxic effects in each case.
Keywords:Cadmium   DNA damage   Haemocytes   Lipid peroxidation   NHE   NADPH oxidase   NO synthase   Toxicity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号