首页 | 本学科首页   官方微博 | 高级检索  
     


Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes
Authors:J T Manolukas  M F Barile  D K Chandler  J D Pollack
Affiliation:Department of Medical Microbiology and Immunology, Ohio State University, Columbus 43210.
Abstract:Cell extracts of the fermentative Mollicutes Acholeplasma laidlawii B-PG9, Acholeplasma morum S2, Mycoplasma capricolum 14, Mycoplasma gallisepticum S6, Mycoplasma pneumoniae FH, Mycoplasma hyopneumoniae J and M. genitalium G-37, and the non-fermentative Mycoplasma hominis PG-21, Mycoplasma hominis 1620 and Mycoplasma bovigenitalium PG-11 were examined for 39 cytoplasmic enzyme activities associated with the tricarboxylic acid (TCA) cycle, transamination, anaplerotic reactions and other enzyme activities at the pyruvate locus. Malate dehydrogenase (EC 4.2.1.2) was the only TCA-cycle-associated enzyme activity detected and it was found only in the eight Mycoplasma species. Aspartate aminotransferase (EC 2.6.1.1) activity was detected in all Mollicutes tested except M. gallisepticum S6. Malate synthetase (EC 4.1.3.2) activity, in the direction of malate formation, was found in the eight Mycoplasma species, but not in any of the Acholeplasma species. Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) was detected in the direction of oxaloacetate (OAA) formation in both Acholeplasma species, but not in any of the Mycoplasma species. Pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), pyruvate dehydrogenase (EC 1.2.4.1) and lactate dehydrogenase (EC 1.1.1.27) activities were found in all ten Mollicutes tested. No activities were detected in any of the ten Mollicutes for aspartase (EC 4.3.1.1), malic enzyme (EC 1.1.1.40), PEP carboxytransphosphorylase (EC 4.1.1.38), PEP carboxykinase (EC 4.1.1.32) or pyruvate orthophosphate dikinase (EC 2.7.9.1). In these TCA-cycle-deficient Mollicutes the pyruvate-OAA locus may be a point of linkage for the carbons of glycolysis, lipid synthesis, nucleic acid synthesis and certain amino acids. CO2 fixation appears obligatory in the Acholeplasma species and either CO2 fixation or malate synthesis appears obligatory in the Mycoplasma species.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号