首页 | 本学科首页   官方微博 | 高级检索  
     


Self assembly of the transmembrane domain promotes signal transduction through the erythropoietin receptor
Authors:Kubatzky K F  Ruan W  Gurezka R  Cohen J  Ketteler R  Watowich S S  Neumann D  Langosch D  Klingmüller U
Affiliation:Max-Planck-Institute of Immunobiology, Freiburg 79108, Germany.
Abstract:Hematopoietic cytokine receptors, such as the erythropoietin receptor (EpoR), are single membrane-spanning proteins. Signal transduction through EpoR is crucial for the formation of mature erythrocytes. Structural evidence shows that in the unliganded form EpoR exists as a preformed homodimer in an open scissor-like conformation precluding the activation of signaling. In contrast to the extracellular domain of the growth hormone receptor (GHR), the structure of the agonist-bound EpoR extracellular region shows only minimal contacts between the membrane-proximal regions. This evidence suggests that the domains facilitating receptor dimerization may differ between cytokine receptors. We show that the EpoR transmembrane domain (TM) has a strong potential to self interact in a bacterial reporter system. Abolishing self assembly of the EpoR TM by a double point mutation (Leu 240-Leu 241 mutated to Gly-Pro) impairs signal transduction by EpoR in hematopoietic cells and the formation of erythroid colonies upon reconstitution in erythroid progenitor cells from EpoR(-/-) mice. Interestingly, inhibiting TM self assembly in the constitutively active mutant EpoR R129C abrogates formation of disulfide-linked receptor homodimers and consequently results in the loss of ligand-independent signal transduction. Thus, efficient signal transduction through EpoR and possibly other preformed receptor oligomers may be determined by the dynamics of TM self assembly.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号