首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional Studies of Split Arabidopsis Ca2+/H+ Exchangers
Authors:Jian Zhao  James M Connorton  YingQing Guo  Xiangkai Li  Toshiro Shigaki  Kendal D Hirschi  and Jon K Pittman
Institution:From the United States Department of Agriculture/Agricultural Research Service, Children''s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600, ;the §Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom, and ;the Vegetable and Fruit Improvement Center, Texas A & M University, College Station, Texas 77845
Abstract:In plants, high capacity tonoplast cation/H+ antiport is mediated in part by a family of cation exchanger (CAX) transporters. Functional association between CAX1 and CAX3 has previously been shown. In this study we further examine the interactions between CAX protein domains through the use of nonfunctional halves of CAX transporters. We demonstrate that a protein coding for an N-terminal half of an activated variant of CAX1 (sCAX1) can associate with the C-terminal half of either CAX1 or CAX3 to form a functional transporter that may exhibit unique transport properties. Using yeast split ubiquitin, in planta bimolecular fluorescence complementation, and gel shift experiments, we demonstrate a physical interaction among the half proteins. Moreover, the half-proteins both independently localized to the same yeast endomembrane. Co-expressing variants of N- and C-terminal halves of CAX1 and CAX3 in yeast suggested that the N-terminal region mediates Ca2+ transport, whereas the C-terminal half defines salt tolerance phenotypes. Furthermore, in yeast assays, auto-inhibited CAX1 could be differentially activated by CAX split proteins. The N-terminal half of CAX1 when co-expressed with CAX1 activated Ca2+ transport, whereas co-expressing C-terminal halves of CAX variants with CAX1 conferred salt tolerance but no apparent Ca2+ transport. These findings demonstrate plasticity through hetero-CAX complex formation as well as a novel means to engineer CAX transport.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号