首页 | 本学科首页   官方微博 | 高级检索  
     


Role of Isoprenylcysteine Carboxylmethyltransferase-catalyzed Methylation in Rho Function and Migration
Authors:Ian Cushman and Patrick J. Casey
Affiliation:From the Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710 and ;the §Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857
Abstract:A number of proteins that play key roles in biological regulatory events undergo a process of post-translational modifications termed prenylation. The prenylation pathway consists of three enzymatic steps; the final processed protein is isoprenoid-modified and methylated on the C-terminal cysteine. This protein modification pathway plays a significant role in cancer biology because many oncogenic proteins undergo prenylation. Methylation of the C terminus by isoprenylcysteine carboxylmethyltransferase (Icmt) is the final step in the prenylation pathway. Cysmethynil, a specific Icmt inhibitor discovered in our laboratory, is able to inhibit Ras-mediated signaling, cell growth, and oncogenesis. We sought to examine the role of Icmt-mediated methylation on the behaviors of cancer cells associated with metastatic potential. Our results indicate that inhibition of methylation reduces migration of the highly metastatic MDA-MB-231 breast cancer cell line. In addition, cell adhesion and cell spreading are also significantly impacted by cysmethynil. To examine the mechanism of Icmt-dependent migration we focused on RhoA and Rac1, prenylated proteins that are important mediators of cell migration through their control of the actin cytoskeleton. Inhibition of Icmt significantly decreases the activation of both RhoA and Rac1; an increase in Rho GDP-dissociation inhibitor (RhoGDI) binding in the absence of methylation appears to contribute to this effect. Furthermore, in the absence of Icmt activity the addition of exogenous RhoA or Rac1 is able to partially rescue directed and random migration, respectively. These findings establish a role for Icmt-mediated methylation in cell migration and advance our understanding of the biological consequences of Rho methylation.Post-translational modifications of proteins play vital roles in many aspects of cell biology. Hence, identifying and understanding the biological impact of these processes is crucial to furthering our basic understanding of how cells function. Numerous proteins that control important biological regulatory events undergo a complex series of post-translational modifications that are directed by the presence of a so-called CaaX motif at their C terminus. This post-translational pathway, termed protein prenylation, is initiated by the attachment of an isoprenoid lipid to an invariant cysteine residue, the C of the CaaX motif (1, 2). Either a 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenoid is covalently attached to this cysteine by protein farnesyltransferase (FTase)2 or protein geranylgeranyltransferase-I (GGTase-I), respectively (3). The prenylation step is followed by cleavage of the three C-terminal amino acids (the -AAX) by an endoplasmic reticulum (ER)-bound protease termed Rce1. Finally, the prenylated cysteine, which is now located at the C terminus, is methylated by isoprenylcysteine carboxylmethyltransferase (Icmt), another integral ER membrane protein (4, 5). The final result of these modifications is a protein that contains a prenylated and methylated cysteine at its C terminus. Numerous studies have demonstrated that this post-translational processing not only facilitates protein association with cellular membranes, but also can play important roles in protein-protein interactions and protein stability (1, 6, 7). Thus, it is clear that CaaX processing is necessary for the biological activities of these proteins.The prenylation pathway has been targeted for potential anticancer therapy because most members of the Ras superfamily, which contains many known oncogenes, undergo CAAX processing. The Ras superfamily consists of five large subfamilies; the two most well-characterized are the Ras and Rho subfamilies (8). Both Ras and Rho proteins are processed by the CaaX pathway; Ras family members are farnesylated, while most Rho family members are geranylgeranylated. These monomeric GTPases cycle between a GDP-bound inactive state and a GTP-bound active state. In their active states, Ras and Rho subfamily members control numerous cell signaling pathways that are involved in cell proliferation, differentiation, migration, polarity, and morphology (9).Abnormally high activity of Ras and Rho signaling pathways contribute to initiation and progression of many types of cancer (10, 11). For example, many breast cancers that are highly metastatic express abnormally high levels of Rho proteins (12). Rho proteins control migration and invasion of cells by tightly coordinating changes in the actin and microtubule cytoskeletons. Acting through their effectors, Rho proteins rearrange the actin cytoskeleton to respond to chemo-attractant gradients, polarize cells, and control migration and invasion. While cell migration is necessary for development, leukocyte function, and other normal cell biologies, dysregulation of migration and invasion results in cancer metastasis (13). Metastasis is an important and deadly progression of cancer and understanding the biology of migrating cancer cells is crucial for therapeutic targeting of this aspect of cancer.Pharmacologic targeting of the enzymes involved in the CaaX-processing pathway has emerged as a promising anticancer strategy. In particular, there has been much effort in designing inhibitors against the protein prenyltransferases, most notably FTase (14, 15). There is also recent evidence that inhibition of geranygeranylation of Rho proteins also impacts oncogenesis and metastasis (1618). However, the overall success of the FTase inhibitors (FTIs) in the clinical setting has been somewhat disappointing. One possible reason is a phenomenon termed “alternate prenylation” in which some FTase substrates, most notably K- and N- Ras, are modified by GGTase and escape inhibition by FTIs (1921). Because the Rce1 protease and Icmt methyltransferase act on all CaaX proteins, problems such as alternate prenylation would not arise if these enzymes were targeted. Hence, while protein prenyltransferase inhibitors still show some promise as anticancer agents, the emerging view that global attenuation of CaaX protein function may be advantageous in blocking cancer cell growth has increased interest in studying the two downstream enzymes involved in CaaX processing.While the biological consequences of prenylation are fairly well understood, the precise roles of C-terminal methylation in CaaX protein function are still elusive. Depending on the CaaX protein, methylation has been ascribed to roles in localization, protein-protein interactions and protein stability (11). The development of an Icmt knock-out mouse model has furthered our understanding of Icmt function (22, 23). Localization studies conducted in cells with genetically deleted Icmt have shown that methylation is important for proper membrane association of Ras proteins. However, the localization of Rho proteins in the absence of Icmt activity appears to be more complicated and may vary depending on family member and activation status (2426). Importantly, inhibition of CaaX protein methylation via either genetic or pharmacologic targeting has shown a clear impact on oncogenic transformation and tumor growth (23, 27, 28).Defining the role of Icmt-mediated methylation in complex cellular behaviors such as migration and invasion is crucial for furthering our understanding of the impact of CaaX protein methylation on the biology of normal and cancer cells. In the current study, we have assessed the impact of Icmt inhibition on cell biological processes associated with the function of Rho proteins, specifically cell adhesion, morphology, and migration. We found that inhibition of Icmt results in a disruption of the actin cytoskeleton and impairs ligand-mediated activation of RhoA and Rac1, a potential consequence of increased RhoGDI binding to both RhoA and Rac1 when their methylation is impaired. Further, we show that the impact of Icmt inhibition on cell migration is due at least in part to impairment of RhoA and Rac1function. These findings establish a role for Icmt-mediated methylation in cell migration and further elucidate the role that methylation plays in the function of Rho GTPases.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号