首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The structure and adhesive mechanism of octopus suckers
Authors:Kier William M  Smith Andrew M
Institution:1 Department of Biology, CB# 3280 Coker Hall, University of North Carolina, Chapel Hill, North Carolina 27599-3280
2 Department of Biology, CNS Room 155, Ithaca College, Ithaca, New York 14850
Abstract:Octopus suckers consist of a tightly packed three-dimensionalarray of muscle with three major muscle fiber orientations:1) radial muscles that traverse the wall; 2) circular musclesarranged circumferentially around the sucker; and 3) meridionalmuscles oriented perpendicular to the circular and radial muscles.The sucker also includes inner and outer fibrous connectivetissue layers and an array of crossed connective tissue fibersembedded in the musculature. Adhesion results from reducingthe pressure inside the sucker cavity. This can be achievedby the three-dimensional array of muscle functioning as a muscular-hydrostat.Contraction of the radial muscles thins the wall, thereby increasingthe enclosed volume of the sucker. If the sucker is sealed toa surface the cohesiveness of water resists this expansion.Thus, the pressure of the enclosed water decreases instead.The meridional and circular muscles antagonize the radial muscles.The crossed connective tissue fibers may store elastic energy,providing an economical mechanism for maintaining attachmentfor extended periods. Measurements using miniature flush-mountedpressure transducers show that suckers can generate hydrostaticpressures below 0 kPa on wettable surfaces but cannot do soon non-wettable surfaces. Thus, cavitation, the failure of waterin tension, may limit the attachment force of suckers. As depthincreases, however, cavitation will cease to be limiting becauseambient pressure increases with depth while the cavitation thresholdis unchanged. Structural differences between suckers will thendetermine the attachment force.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号