首页 | 本学科首页   官方微博 | 高级检索  
     


Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria
Authors:Iracema Andrade Nascimento  Sheyla Santa Izabel Marques  Iago Teles Dominguez Cabanelas  Solange Andrade Pereira  Janice Isabel Druzian  Carolina Oliveira de Souza  Daniele Vital Vich  Gilson Correia de Carvalho  Maurício Andrade Nascimento
Affiliation:1. Institute of Biology, Federal University of Bahia, Campus Ondina, 40.170-290, Salvador, Bahia, Brazil
5. Av Oceanica, 2353/403 Ondina, 40170-010, Salvador, Bahia, Brazil
2. Institute of Pharmacy, Federal University of Bahia, Campus Ondina, 40.170-290, Salvador, Bahia, Brazil
3. Health Sciences Institute, Federal University of Bahia, Campus Canela, 40.110-100, Salvador, Bahia, Brazil
4. Polytechnic Institute, Federal University of Bahia, 40.210-630, Salvador, Bahia, Brazil
Abstract:The viability of algae-based biodiesel industry depends on the selection of adequate strains in regard to profitable yields and oil quality. This work aimed to bioprospecting and screening 12 microalgae strains by applying, as selective criteria, the volumetric lipid productivity and the fatty acid profiles, used for estimating the biodiesel fuel properties. Volumetric lipid productivity varied among strains from 22.61 to 204.91 mg l?1 day?1. The highest lipid yields were observed for Chlorella (204.91 mg l?1 day1) and Botryococcus strains (112.43 and 98.00 mg l?1 day?1 for Botryococcus braunii and Botryococcus terribilis, respectively). Cluster and principal components analysis analysis applied to fatty acid methyl esters (FAME) profiles discriminated three different microalgae groups according to their potential for biodiesel production. Kirchneriella lunaris, Ankistrodesmus fusiformis, Chlamydocapsa bacillus, and Ankistrodesmus falcatus showed the highest levels of polyunsaturated FAME, which incurs in the production of biodiesels with the lowest (42.47–50.52) cetane number (CN), the highest (101.33–136.97) iodine values (IV), and the lowest oxidation stability. The higher levels of saturated FAME in the oils of Chlamydomonas sp. and Scenedesmus obliquus indicated them as source of biodiesel with higher oxidation stability, higher CN (63.63–64.94), and lower IV (27.34–35.28). The third group, except for the Trebouxyophyceae strains that appeared in isolation, are composed by microalgae that generate biodiesel of intermediate values for CN, IV, and oxidation stability, related to their levels of saturated and monosaturated lipids. Thus, in this research, FAME profiling suggested that the best approach for generating a microalgae-biodiesel of top quality is by mixing the oils of distinct cell cultures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号