首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A block in endoplasmic reticulum-to-Golgi trafficking inhibits phospholipid synthesis and induces neutral lipid accumulation
Authors:Gaspar Maria L  Jesch Stephen A  Viswanatha Raghuvir  Antosh Amy L  Brown William J  Kohlwein Sepp D  Henry Susan A
Institution:Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 and Institute of Molecular Biosciences, University of Graz, A8010 Graz, Austria.
Abstract:Seeking to better understand how membrane trafficking is coordinated with phospholipid synthesis in yeast, we investigated lipid synthesis in several Sec(-) temperature-sensitive mutants, including sec13-1. Upon shift of sec13-1 cells to the restrictive temperature of 37 degrees C, phospholipid synthesis decreased dramatically relative to the wild type control, whereas synthesis of neutral lipids, especially triacylglycerol (TAG), increased. When examined by fluorescence microscopy, the number of lipid droplets appeared to increase and formed aggregates in sec13-1 cells shifted to 37 degrees C. Electron microscopy confirmed the increase in lipid droplet number and revealed that many were associated with the vacuole. Analysis of lipid metabolism in strains lacking TAG synthase genes demonstrated that the activities of the products of these genes contribute to accumulation of TAG in sec13-1 cells after the shift to 37 degrees C. Furthermore, the permissive temperature for growth of the sec13-1 strain lacking TAG synthase genes was 3 degrees C lower than sec13-1 on several different growth media, indicating that the synthesis of TAG has physiological significance under conditions of secretory stress. Together these results suggest that following a block in membrane trafficking, yeast cells channel lipid metabolism from phospholipid synthesis into synthesis of TAG and other neutral lipids to form lipid droplets. We conclude that this metabolic switch provides a degree of protection to cells during secretory stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号