首页 | 本学科首页   官方微博 | 高级检索  
     


Alterations in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy
Authors:Jian, Ling-cheng   Li, Paul H.   Sun, Long-hua   Chen, Tony H.H.
Abstract:In poplar (Populus deltoides Bartr. ex Marsh), bud dormancyand freezing tolerance were concomitantly induced by short-day(SD) photoperiods. Ultrastructural changes and the alterationin subcellular localization of calcium in apical bud cells associatedwith dormancy development were investigated. During the developmentof dormancy, the thickness of cell walls increased significantly,the number of starch granules increased, and there was a significantaccumulation of storage proteins in the vacuoles of the apicalbud cells. The most striking change was the constriction andblockage of the plasmodesmata. It was demonstrated that antimonate precipitation is a reliabletechnique for studying subcellular localization of calcium inpoplar apical bud cells. Under the long day (LD) photoperiod,electron-dense calcium antimonate precipitates were mainly localizedin vacuoles, intercellular spaces and plastids. Some antimonateprecipitates were also found in the cell walls and at the entranceof the plasmodesmata. However, there were few Ca2+ depositsfound in the cytosol and nucleus. After 20 d of SD exposure,when development of bud dormancy was initiated, calcium depositsin intercellular spaces were decreased, whereas some depositswere found in the cytosol and nuclei. From 28–49 d ofSD exposure, while dormancy was developing, a large number ofCa2+ precipitates were found in the cytosol and nuclei. Whendeep dormancy was reached after 77 d of SD exposure, Ca2+ depositsbecame fewer in both cytosol and nuclei, whereas numerous depositswere again observed in the cell walls and in the intercellularspaces. These results suggest that under the influence of SDphotoperiods, there are alterations in subcellular Ca2+ localization,and changes in ultrastructure of apical bud cells during thedevelopment of dormancy. The constriction and blockage of plasmodesmatamay cause the cessation of symplastic transport, limit cellularcommunication and signal transduction between adjacent cells,which in turn may lead to events associated with growth cessationand dormancy development in buds. Key words: Poplar, apical bud cells, Ca2+ subcellular localization, dormancy
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号