首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of ribulose bisphosphate carboxylase in intact chloroplasts by CO2 and light
Authors:J T Bahr  R G Jensen
Institution:Department of Chemistry, University of Arizona, Tucson, Arizona 85721 U.S.A.
Abstract:The activity of ribulose 1,5-bisphosphate (RuBP) car?ylase in intact spinach chloroplasts is shown to depend on light and CO2. This activity was measured upon lysis of chloroplasts and assay of the initial activity using nonlimiting substrate concentrations. Incubation of chloroplasts at 25 °C in the absence of CO2 results in a gradual inactivation of the RuBP car?ylase. In the presence of CO2 the initial activity is preserved or increased. CO2 is also able to reactivate the chloroplast car?ylase previously inactivated in the absence of CO2. Upon illumination of the chloroplasts, additional activation was observed. This light activation results from an increased affinity for CO2 of the chloroplast car?ylase. At pH 7.8, the enzyme in dark-adapted chloroplasts required 112 μ m CO2 for half activation, while in the light it required 24 μ m CO2. The light activation was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, carbonylcyanide 3-chlorophenylhydrazone, or dl-glyceraldehyde. Part of the light activation is most likely due to increased Mg2+ in the stroma. dl-Glyceraldehyde inhibition also suggests that some intermediate of the photosynthetic carbon cycle is involved. These results suggest that photosynthetic CO2 assimilation in the chloroplast depends upon the amount of activation of the RuBP car?ylase. This activation is regulated by CO2 and light-induced changes in the chloroplast stroma such as pH, Mg2+, and intermediates of the photosynthetic carbon cycle.
Keywords:To whom all correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号