首页 | 本学科首页   官方微博 | 高级检索  
     


Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels
Authors:Bennetts Brett  Rychkov Grigori Y  Ng Hooi-Ling  Morton Craig J  Stapleton David  Parker Michael W  Cromer Brett A
Affiliation:St. Vincent's Institute, Victoria, Australia.
Abstract:ClC proteins are a family of chloride channels and transporters that are found in a wide variety of prokaryotic and eukaryotic cell types. The mammalian voltage-gated chloride channel ClC-1 is important for controlling the electrical excitability of skeletal muscle. Reduced excitability of muscle cells during metabolic stress can protect cells from metabolic exhaustion and is thought to be a major factor in fatigue. Here we identify a novel mechanism linking excitability to metabolic state by showing that ClC-1 channels are modulated by ATP. The high concentration of ATP in resting muscle effectively inhibits ClC-1 activity by shifting the voltage gating to more positive potentials. ADP and AMP had similar effects to ATP, but IMP had no effect, indicating that the inhibition of ClC-1 would only be relieved under anaerobic conditions such as intense muscle activity or ischemia, when depleted ATP accumulates as IMP. The resulting increase in ClC-1 activity under these conditions would reduce muscle excitability, thus contributing to fatigue. We show further that the modulation by ATP is mediated by cystathionine beta-synthase-related domains in the cytoplasmic C terminus of ClC-1. This defines a function for these domains as gating-modulatory domains sensitive to intracellular ligands, such as nucleotides, a function that is likely to be conserved in other ClC proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号