首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Selecting near-native conformations in homology modeling: the role of molecular mechanics and solvation terms
Authors:Janardhan A  Vajda S
Institution:Department of Biomedical Engineering, Boston University, Massachusetts 02215, USA.
Abstract:A free energy function, combining molecular mechanics energy with empirical solvation and entropic terms, is used for ranking near-native conformations that occur in the conformational search steps of homology modeling, i.e., side-chain search and loop closure calculations. Correlations between the free energy and RMS deviation from the X-ray structure are established. It is shown that generally both molecular mechanics and solvation/entropic terms should be included in the potential. The identification of near-native backbone conformations is accomplished primarily by the molecular mechanics term that becomes the dominant contribution to the free energy if the backbone is even slightly strained, as frequently occurs in loop closure calculations. Both terms become equally important if a sufficiently accurate backbone conformation is found. Finally, the selection of the best side-chain positions for a fixed backbone is almost completely governed by the solvation term. The discriminatory power of the combined potential is demonstrated by evaluating the free energies of protein models submitted to the first meeting on Critical Assessment of techniques for protein Structure Prediction (CASP1), and comparing them to the free energies of the native conformations.
Keywords:free energy  loop closure  protein conformation  side-chain search
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号