首页 | 本学科首页   官方微博 | 高级检索  
     


Physiology of receptor capping induced by erythrocyte surface antigens
Authors:Robert F. Ashman
Affiliation:Department of Microbiology and Immunology and Medicine, UCLA School of Medicine, Los Angeles, California 90024 USA
Abstract:The capping of antigen-binding cell receptors by bound sheep erythrocytes (SRC) demonstrates that antigen mounted on a cell surface can generate a signal leading to the capping reaction. SRC-induced capping of ABC is: (a) highly dependent on both aerobic and anaerobic glycolysis, (b) unaffected by agents altering intracellular cyclic nucleotide concentrations, (c) slightly more vigorous in strain A than in CBA mice, (d) inhibited by calcium ionophore, (e) inhibited by the local anesthetic dibucaine and the tranquillizer chlorpromazine, (f) dependent on cytoskeletal activity (i.e., inhibited by the simultaneous presence of colchicine and cytochalasin B), (g) not dependent on the membrane ATPases inhibited by ouabain, (h) not dependent on motility, in that agents which inhibit motility (cytochalasin B alone) or stimulate motility (carbachol) do not alter capping behavior. These properties represent similarities between the capping of surface Ig by the cellular antigens on SRC and by proteins such as anti-Ig. SRC-induced capping is much slower than anti-Ig-induced capping, and only engages 30–40% of ABC, indicating that the nature of the crosslinking agent can influence the kinetics and extent of capping. But SRC cap with the rapid kinetics typical of anti-Ig-induced capping if the surface membrane of the ABC is first cleared of other glycoproteins with trypsin. The removal of negatively charged sialic acid residues by neuraminidase has no such effect. It is probable that the compression of bound SRC into a small area of the membrane requires more energy than does the capping of protein ligands, and that some cells cannot muster enough energy to achieve it.
Keywords:Address reprint requests to Robert F. Ashman   M. D.   Department of Microbiology and Immunology   UCLA School of Medicine   Los Angeles   Calif. 90024.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号