首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Sequence Dependence of Human Nucleotide Excision Repair Efficiencies of Benzo[a]pyrene-derived DNA Lesions: Insights into the Structural Factors that Favor Dual Incisions
Authors:Konstantin Kropachev  Yuqin Cai  Alexander Kolbanovskii  Lu Zhang  Dinshaw Patel  Nicholas E Geacintov
Institution:1 Department of Chemistry, New York University, New York, NY 10003, USA
2 Biology, New York University, New York, NY 10003, USA
3 Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
4 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
Abstract:Nucleotide excision repair (NER) is a vital cellular defense system against carcinogen-DNA adducts, which, if not repaired, can initiate cancer development. The structural features of bulky DNA lesions that account for differences in NER efficiencies in mammalian cells are not well understood. In vivo, the predominant DNA adduct derived from metabolically activated benzoa]pyrene (BP), a prominent environmental carcinogen, is the 10S (+)-trans-anti-BP]-N2-dG adduct (G*), which resides in the B-DNA minor groove 5′-oriented along the modified strand. We have compared the structural distortions in double-stranded DNA, imposed by this adduct, in the different sequence contexts 5′-…CGG*C…, 5′-…CG*GC…, 5′-…CIG*C… (I is 2′-deoxyinosine), and 5′-…CG*C…. On the basis of electrophoretic mobilities, all duplexes manifest moderate bends, except the 5′-…CGG*C…duplex, which exhibits an anomalous, slow mobility attributed to a pronounced flexible kink at the site of the lesion. This kink, resulting from steric hindrance between the 5′-flanking guanine amino group and the BP aromatic rings, both positioned in the minor groove, is abolished in the 5′-…CIG*C…duplex (the 2′-deoxyinosine group, I, lacks this amino group). In contrast, the sequence-isomeric 5′-…CG*GC…duplex exhibits only a moderate bend, but displays a remarkably increased opening rate at the 5′-flanking base pair of G*, indicating a significant destabilization of Watson-Crick hydrogen bonding. The NER dual incision product yields were compared for these different sequences embedded in otherwise identical 135-mer duplexes in cell-free human HeLa extracts. The yields of excision products varied by a factor of as much as ∼ 4 in the order 5′-...CG*GC…> 5′...CGG*C…≥ 5′...CIG*C…≥ 5′-…CG*C…. Overall, destabilized Watson-Crick hydrogen bonding, manifested in the 5′-...CG*GC...duplex, elicits the most significant NER response, while the flexible kink displayed in the sequence-isomeric 5′-...CGG*C...duplex represents a less significant signal in this series of substrates. These results demonstrate that the identical lesion can be repaired with markedly variable efficiency in different local sequence contexts that differentially alter the structural features of the DNA duplex around the lesion site.
Keywords:NER  nucleotide excision repair  CPD  cyclobutane pyrimidine dimer  PAH  polycyclic aromatic hydrocarbons  anti-BPDE  7r  8t-dihydroxy-t9  10-epoxy-7  8  9  10-tetrahydrobenzo[a]pyrene  BP  benzo[a]pyrene  MD  molecular dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号