首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Universal Stress Protein UspC Scaffolds the KdpD/KdpE Signaling Cascade of Escherichia coli under Salt Stress
Authors:Ralf Heermann  Arnim Weber  Bettina Mayer  Melanie Ott  Elisabeth Hauser  Torsten Pirch  Kirsten Jung
Institution:1 Ludwig-Maximilians-Universität München, Bereich Mikrobiologie, Groβhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
2 Munich Center of Integrated Protein Science CiPSM
Abstract:The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K+-transport system KdpFABC in response to K+ limitation or salt stress. Under K+ limiting conditions the Kdp system restores the intracellular K+ concentration, while in response to salt stress K+ is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K+, so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD→KdpE→DNA) resulting in phosphorylation of KdpE at a K+ concentration that would otherwise almost prevent phosphorylation. In agreement, in a ΔuspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K+ limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE∼P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins.
Keywords:SPR  surface plasmon resonance  MAPK  mitogen-activated protein kinase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号