首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecularly imprinted poly beta-cyclodextrin polymer: application in protein refolding
Authors:Ali Esmaeili Mohammad  Yazdanparast Razieh
Institution:Institute of Biochemistry and Biophysics, P.O. Box 13145-1384, University of Tehran, Tehran, Iran.
Abstract:Regarding our previous report on refolding of alkaline phosphatase Yazdanparast and Khodagholi, 2005 Arch. Biochem. Biophys] it was found that in spite of the anti-aggregatory effect of 3-(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitteronic detergent, the recovered activity was almost the same as the recovered activity obtained through the unassisted approach. The low recovery yield is probably due to the bulky groups of the detergent that interfere with its entrance into the small cavity of the stripping agent, cyclodextrin, implying that the stripping of detergent molecules from the detergent-protein complexes plays a major role in successful refolding processes. To improve the efficiency of CHAPS stripping, we evaluated, for the first time, the stripping potential of a molecular imprinting polymer designed to replace beta-CD. In this approach, CHAPS was used as the template and the refolding of GuHCl denatured alkaline phosphatase was studied. Our results indicated that under the optimally developed refolding environment and similar to stripping by soluble beta-CD, a refolding yield of 79% was obtained for denatured alkaline phosphatase using 20 mg/ml of the molecularly imprinted poly (beta-CD) polymer. The major advantage of the new stripping agent, besides of its recycling option and ease of separation from the finished product, is its high potential of preventing aggregate formation. Based on these results, it seems that the new stripping strategy can constitute an ideal approach for refolding of proteins at much lower industrial costs compared to stripping with soluble beta-cyclodextrin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号