首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and thermodynamic characterization of Pal, a phage natural chimeric lysin active against pneumococci
Authors:Varea Julio  Monterroso Begoña  Sáiz José L  López-Zumel Consuelo  García José L  Laynez José  García Pedro  Menéndez Margarita
Affiliation:Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.
Abstract:Pal amidase, encoded by pneumococcal bacteriophage Dp-1, represents one step beyond in the modular evolution of pneumococcal murein hydrolases. It exhibits the choline-binding module attaching pneumococcal lysins to the cell wall, but the catalytic module is different from those present in the amidases coded by the host or other pneumococcal phages. Pal is also an effective antimicrobial agent against Streptococcus pneumoniae that may constitute an alternative to antibiotic prophylaxis. The structural implications of Pal singular structure and their effect on the choline-amidase interactions have been examined by means of several techniques. Pal stability is maximum around pH 8.0 (Tm approximately 50.2 degrees C; DeltaHt = 183 +/- 4 kcal mol(-1)), and its constituting modules fold as two tight interacting cooperative units whose denaturation merges into a single process in the free amidase but may proceed as two well resolved events in the choline-bound state. Choline titration curves reflect low energy ligand-protein interactions and are compatible with two sets of sites. Choline binding strongly stabilizes the cell wall binding module, and the conformational stabilization is transmitted to the catalytic region. Moreover, the high proportion of aggregates formed by the unbound amidase together with choline preferential interaction with Pal dimers suggest the existence of marginally stable regions that would become stabilized through choline-protein interactions without significantly modifying Pal secondary structure. This structural rearrangement may underlie in vitro "conversion" of Pal from the low to the full activity form triggered by choline. The Pal catalytic module secondary structure could denote folding conservation within pneumococcal lytic amidases, but the number of functional choline binding sites is reduced (2-3 sites per monomer) when compared with pneumococcal LytA amidase (4-5 sites per monomer) and displays different intermodular interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号