首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interleukin-1β induction of tissue inhibitor of metalloproteinase (TIMP-1) is functionally antagonized by prostaglandin E2 in human synovial fibroblasts
Authors:John A Dibattista  Jean-Pierre Pelletier  Muhammad Zafarullah  Kazushi Iwata  Johanne Martel-Pelletier
Abstract:Elevated levels of tissue inhibitor of metalloproteases-1 (TIMP-1) have been demonstrated in inflamed synovial membranes, and it is believed that the inhibitor may play a critical role in the regulation of connective tissue degradation. The present study was undertaken to define the cellular mechanism of action of the inflammatory mediators, interleukin-1β (IL-1β) and prostaglandin E2 (PGE2), in the control of TIMP-1 synthesis and expression in human synovial fibroblasts. Recombinant human IL-1β induced a time- and dose-dependent saturable response in terms of TIMP-1 mRNA expression (effective concentration for 50% maximal response, EC50 = 31.5 ± 3.3 pg/ml) and protein synthesis (EC50 = 30 ± 3.3 pg/ml). The protein kinase C (PKC) inhibitors, H-7, staurosporine, and calphostin C, reversed the rhIL-1β induction of TIMP-1 mRNA. PGE2 also inhibited rhIL-1β-stimulated TIMP-1 mRNA expression and protein secretion in a dose-dependent fashion. The concentration of PGE2 necessary to block 50% of rhIL-1β-stimulated TIMP-1 secretion, IC50, was 1.93 ng/ml (4.89 nM). Forskolin, and other stable derivatives of cAMP, mimicked, to a large extent, the effects of PGE2. The phorbol ester, PMA, up-regulated considerably the mRNA expression of TIMP-1 but had no effect on protein production. Calphostin C substantially reduced PMA-activated TIMP-1 expression. Staurosporine, calphostin C, H-7, and substances that elevate cellular levels of cAMP, like PGE2, also reduced basal expression and synthesis of TIMP-1. Taken together, the data suggest that PKA and C may mediate opposing effects in terms of TIMP-1 expression and secretion in human synovial fibroblasts.
Keywords:interleukin-1  prostaglandin E2  TIMP-1  human synovial fibroblasts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号