首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Use of denaturing high-performance liquid chromatography (DHPLC) to characterize the bacterial and fungal airway microbiota of cystic fibrosis patients
Authors:Jérôme Mounier  Audrey Gouëllo  Marlène Keravec  Solène Le Gal  Grégory Pacini  Stella Debaets  Gilles Nevez  Gilles Rault  Georges Barbier  Geneviève Héry-Arnaud
Institution:1. EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, SFR148 ScInBioS, Université de Brest, Brest, F-29200, France
2. Département de Bactériologie-Virologie, Hygiène Hospitalière et Parasitologie-Mycologie, CHRU Brest, Brest, F-29200, France
3. CRCM mixte, Centre de Perharidy, Roscoff, F-29680, France
Abstract:The aim of this study was to evaluate the use of denaturing high-performance liquid chromatography (DHPLC) to characterize cystic fibrosis (CF) airway microbiota including both bacteria and fungi. DHPLC conditions were first optimized using a mixture of V6, V7 and V8 region 16S rRNA gene PCR amplicons from 18 bacterial species commonly found in CF patients. Then, the microbial diversity of 4 sputum samples from 4 CF patients was analyzed using cultural methods, cloning/sequencing (for bacteria only) and DHPLC peak fraction collection/sequencing. DHPLC analysis allowed identifying more bacterial and fungal species than the classical culture methods, including well-recognized pathogens such as Pseudomonas aeruginosa. Even if a lower number of bacterial Operational Taxonomic Units (OTUs) was identified by DHPLC, it allowed to find OTUs unidentified by cloning/sequencing. The combination of both techniques permitted to correlate the majority of DHPLC peaks to defined OTUs. Finally, although Aspergillus fumigatus detection using DHPLC can still be improved, this technique clearly allowed to identify a higher number of fungal species versus classical culture-based methods. To conclude, DHPLC provided meaningful additional data concerning pathogenic bacteria and fungi as well as fastidious microorganisms present within the CF respiratory tract. DHPLC can be considered as a complementary technique to culture-dependent analyses in routine microbiological laboratories.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号