首页 | 本学科首页   官方微博 | 高级检索  
     


Rate-limiting steps and role of active site Lys443 in the mechanism of carbapenam synthetase
Authors:Arnett Samantha O  Gerratana Barbara  Townsend Craig A
Affiliation:Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
Abstract:Carbapenam synthetase (hereafter named CPS) catalyzes the formation of the beta-lactam ring in the biosynthetic pathway to (5R)-carbapen-2-em-3-carboxylate, the simplest of the carbapenem antibiotics. Kinetic studies showed remarkable tolerance to substrate stereochemistry in the turnover rate but did not distinguish between chemistry and a nonchemical step such as product release or conformational change as being rate-determining. Also, X-ray structural studies and modest sequence homology to beta-lactam synthetase, an enzyme that catalyzes the formation of a monocyclic beta-lactam ring in a similar ATP/Mg2+-dependent reaction, implicate K443 as an essential residue for substrate binding and intermediate stabilization. In these experiments, we use pH-rate profiles, deuterium solvent isotope effects, and solvent viscosity measurements to examine the rate-limiting step in this complex overall process of substrate adenylation and intramolecular ring formation. Mutagenesis and chemical rescue demonstrate that K443 is the general acid visible in the pH-rate profile of the wild-type CPS-catalyzed reaction. On the basis of these results, we propose a mechanism in which the rate-limiting step is beta-lactam ring formation coupled to a protein conformational change and underscore the role of K443 throughout the reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号