首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nucleotide dependent monomer/dimer equilibrium of OpuAA, the nucleotide-binding protein of the osmotically regulated ABC transporter OpuA from Bacillus subtilis
Authors:Horn Carsten  Bremer Erhard  Schmitt Lutz
Institution:Institute of Biochemistry, Biocenter N210, Johann-Wolfgang Goethe University Frankfurt, Marie-Curie Str. 9, 60439, Frankfurt, Germany.
Abstract:The OpuA system of Bacillus subtilis is a member of the substrate-binding-protein-dependent ABC transporter superfamily and serves for the uptake of the compatible solute glycine betaine under hyperosmotic growth conditions. Here, we have characterized the nucleotide-binding protein (OpuAA) of the B.subtilis OpuA transporter in vitro. OpuAA was overexpressed heterologously in Escherichia coli as a hexahistidine tag fusion protein and purified to homogeneity by affinity and size exclusion chromatography (SEC). Dynamic monomer/dimer equilibrium was observed for OpuAA, and the K(D) value was determined to be 6 microM. Under high ionic strength assay conditions, the monomer/dimer interconversion was diminished, which enabled separation of both species by SEC and separate analysis of both monomeric and dimeric OpuAA. In the presence of 1 M NaCl, monomeric OpuAA showed a basal ATPase activity (K(M)=0.45 mM; k(2)=2.3 min(-1)), whereas dimeric OpuAA showed little ATPase activity under this condition. The addition of nucleotides influenced the monomer/dimer ratio of OpuAA, demonstrating different oligomeric states during its catalytic cycle. The monomer was the preferred species under post-hydrolysis conditions (e.g. ADP/Mg(2+)), whereas the dimer dominated the nucleotide-free and ATP-bound states. The affinity and stoichiometry of monomeric or dimeric OpuAA/ATP complexes were determined by means of the fluorescent ATP-analog TNP-ATP. One molecule of TNP-ATP was bound in the monomeric state and two TNP-ATP molecules were detected in the dimeric state of OpuAA. Binding of TNP-ADP/Mg(2+) to dimeric OpuAA induced a conformational change that led to the decay of the dimer. On the basis of our data, we propose a model that couples changes in the oligomeric state of OpuAA with ATP hydrolysis.
Keywords:ABC transporter  nucleotide-binding protein  ATPase  monomer/dimer equilibrium  TNP-ATP
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号